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Summary 
An analytical investigation is made of a heretofore unimpor- 

tant flutter phenomenon that may occur in a propeller-nacelle- 
wing combination--a flutter condition which involvespropeller and 
nacelle precession, and which has been of major concern re- 
cently. One of the objects of the investigation is to isolate and 
show the influence of those parameters which appear to  be most 
strongly linked with thiswhirl-type instability. Considered, for ex- 
ample, are various combinations of pitch and yaw stiffnesses of the 
nacelle, structural darnping, and propeller speed. To understand 
the behavior of the system better, the motion due to  various 
initial disturbances is also studied for both subcritical and super- 
critical conditions. 

The results presented are derived by digital and analog means, 
the analog setup being used primarily for the motion studies. 
Part of the study is devoted to a further examination of the pro- 
peller aerodynamics. Finally, a comparison is made of analyti- 
cally determined critical conditions with results obtained in some 
wind-tunnel tests. 

Symbols 
a = lift-curve slope 
a,, b, = generalized coordinates 
A = blade aspect ratio 
C = blade chord 
Lo = blade reference chord 
e = distance between pivot and propeller plane 
EIl, EI,  = bending stiffnesses in the yaw and pitch directions 
F, G = oscillating lift function of flutter 
E = structural damping (as used in 1 + ig times the 

stiffness) 
i = dZ 
I" 

point 
J = advance ratio, uV/QR 
k. k + ,  ke = reduced frequency parameters, k = wc0/2nR, k+ 

kP = radius of gyration of proptliirr aboiit ;I diamctrica! 

k p  = radius of gyration of propeller about spin axis 
K+, KO 

1 = aerodynamic lift on blade per unit length 
L,, L, 

A!f = forward-flight Mach number 
iM, = mass of propeller 
Mu, M z  = total aerodynamic moment due to propeller about 

M+, Me = effective generalized mass in the yaw and pitch 

n = stiffness ratio, K+/Ke 
r = radius from hub to section along blade 
R = blade tip radius 
S' = propeller disk area 

= total moment of inertia of system about pivot 

= w+~o/BnR, ko = wsco/2QR 

axis 

= effective linear stiffnesses in the yaw and pitch 
directions (see table in Appendix A) 

= total aerodynamic force due to propeller in the y 
and z directions 

the y and z axes 

directions 
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= torsional spring constant in yaw and pitch direc- 

= time 

= resultant velocity at radius r ,  U = d V z  + Q4rz 
(also used for potential energy) 

= forward flight speed 
= coordinate axes (see Appendix A) 
= angle of attack 
= viscous damping factors in yaw and pitch direc- 

= critical damping factor, 2 G  
= pitch angle 
= mass ratio, Mp,lxpc02R 
= air density in mass units 
= phase angle 
= yaw angle 
= precession frequency 
= fundamental natural frequencies in yaw and 

= propeller rotational frequency 

tions (see table in Appendix A) 

tions 

pitch for nonrotating propeller 

Introduction 

HE PURPOSE OF THIS PAPER is to examine some of the T fundamental aspects of the propeller whirl flutter- 
a precision-type instability that can occur in a flexibly 
mounted aircraft engine-propeller combination. 

Although Browne and Taylor' recognized the possible 
existence of such an instability as early as 1938, it was 
found that the conditions under which such a system 
becomes unstable were not likely to be encountered in 
actual aircraft of that era. The situation did not change 
in subsequent years and so further consideration of the 
whirl phenomenon subsided or, a t  least, was considered 
to be essentiaiiy of acadeiiik intcrcst ody .  Hewever, 
modem configurations such as iurtupropelkr aiicdt.  
with long-overhang nacelles and unusual VTOL con- 
figurations have given rise to a re-examination of the 
entire problem. Ref. 2 represents a recent considera- 
tion of the problem. 

This paper attempts to generalize and extend the 
treatment, and specifically aims to isolate and show the 
influence of some of the key parameters involved in 
propeller whirl. The approach followed is to deal pri- 
marily with some rather simple systems with a view 
toward obtaining a better understanding of the basic 
mechanism of the phenomenon. The body of the paper 
describes the systems treated, indicates the importance 
of various parameters on whirl stability, and presents 
some substantiating experimental data. The analytical 
procedures used are developed separately in appendices 
a t  the end of the paper and in Ref. 2. These appendices 
include an independent development of the nonsteady 
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FIG. 1. Systems considered 

propeller aerodynamics involved, including an approxi- 
mate examination of aerodynamic lag effects. 

Dynamic System 
Cases Treated 

First, let us look at the two cases which we will be 
treating throughout the paper (Fig. 1). In system 1 
on the left, the power plant and nacelle structure are 
represented by a cantilever beam having a continuous 
arbitrary distribution of mass and stiffness along its 
length L. In system 2, a rigid nacelle or power-plant 
structure is assumed to be spring-restrained about pitch 
and yaw axes located a distance e behind the propeller 
disk. (System 2 was the representation used in Ref. 
2.) It is assumed that the vibration characteristics 
of both systems can be described by two degrees of 
freedom-pitch motion in a vertical plane and yaw mo- 
tion in a horizontal plane. Pertinent physical properties 
for the systems to  be considered in this paper are given 
in Table 1. 

When the continuous system is approximated by a 
single natural pitch mode and a single natural yaw 
mode, as in the present case, equivalent relations can 
be established between the two systems. For example, 
an effective pivot location for pitch motion may be 
defined for system 1 as being simply 1/01, where 0, 
is the inclination of the propeller axis corresponding to 
a unit deflection in the natural pitch mode zl. Simi- 
larly, equivalent stiffnesses, mass properties, and so on 
can also be derived for the two systems (see Appendix 

The bottom of Fig. 1 lists a few of the important 
parameters that have been studied. The parameters 
include the effective pitch and yaw stiffnesses, KO and 
K,, the stiffness ratio n = K,/K,, viscous and struc- 
tural damping coefficients p and g, the distance e from 
the propeller plane to the pivot axis, a nondimensional 
mass parameter p expressing a ratio of blade structural 
mass to air mass, the rotational speed D of the propeller, 
and the undamped natural pitch frequency we of the 
system with a nonrotating propeller. These and other 
parameters are defined in more detail in Appendix A, 
where the equations of motion for the two systems are 
derived. 

A). 

Gyroscopic Coupling 

Before we discuss the influence of these various 
parameters on whirl stability, i t  is instructive to look 
first a t  a case where damping and aerodynamic forces 
on the propeller are neglected. Mounted a t  the end of 
a flexible structure, which allows angular deflections, 
the spinning propeller behaves like a gyroscopic pen- 
dulum. If, for example, the system is released from an 
initial pitch deflection, the resulting angular velocity as 
the system springs back induces a gyroscopic moment 
about the yaw axis. This moment, in turn, causes the 
system to yaw, which induces a pitching moment, and 
so on. Thus, a very significant characteristic of our 
system is that the pitch and yaw modes are coupled by 
the gyroscopic action of the rotating propeller. As a 
result of this coupling, natural modes, which for a non- 
rotating propeller occur independently in the vertical 
or horizontal planes, are now characterized by a pre- 
cession motion about the axis of the undisturbed system 
(see, for example, Ref. 3). 

Precession Frequencies-Fig. 2 shows a typical ex- 
ample of the manner in which the precession frequencies 
vary with the speed of the propeller. The case shown 
is for the system wherein the yaw stiffness is assumed 
to be twice the pitch stiffness so that a t  zero propeller 
speed (Q /we  = 0) the frequency ratio is w,/we = 4. 
Note that, as we increase the propeller speed-and thus 
the gyroscopic coupling-the lower frequency decreases 
and the higher frequency increases. The sketches on 
the right of Fig. 2 illustrate the elliptical-shaped paths 
traced by the propeller hub during precession. We 
see that the lower frequency mode, referred to here as 
the backward whirl mode, precesses in a direction op- 
posite to that of propeller rotation, while the higher fre- 
quency mode precesses in the direction of propellcr rota- 
tion, and hence is termed the forward whirl mode. I n  
the results to follow we will find that whirl instability 
always appears to develop in the backward whirl 
mode. 

Propeller Aerodynamics 

In Fig. 2 we saw that the propeller gyroscopic 
moments caused coupling between the pitch and yaw 
degrees of freedom. We recognize, however, that  this 
gyroscopic action cannot in itself, lead to a divergent- 

TABLE 1 
Parameters Used for Various Systems 

System 1 2A 2B 2C 

0.585 2.65t 1 . 8  2.76 
1 / 4 6  0.248 1 / 4 6  0.338 

0.479 0.352 1 / 4 3  1 / 4 3  
1.90 6.77 8.91 2.54 
4 . 5  4.63 4 . 5  2.96 

150 170 Variable 88.8 

= 0,. ? I n  Fig.  10, e / R  and the moment of inertia 
about the pivot axis are varied. 
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type whirl instability because the net energy input to 
the system is zero.* Let us now see what happens when 
the aerodynamic forces acting on the propeller are taken 
into account. We find that when the resultant air 
stream is misaligned from the propeller rotation axis due 
to, say, an angular displacement or a transverse linear 
velocity of the propeller axis, certain forces and mo- 
ments are generated (see the derivation in Appendix B 
or the work of Ribner4). For example, if the axis is de- 
flected in pitch, a vertical lift force and a yawing 
moment are developed by the propeller which are, for 
small deflections, proportional to the pitch angle. In  
addition to angular displacements and transverse veloci- 
ties, there exist aerodynamic forces proportional to the 
rate of change in the angular deflection. 

FORWARD 
PRECESSION 

‘5 t 
I I 

0 2 4 6 8 1 0 1 2  
- n GO 

, we 

FIG. 2. “Natural” precession frequencies (system I, K+ = 2Ke). 

Propeller Whirl 
Stability Boundaries 

Conditions of neutral stability of the system may be 
established as in a conventional flutter analysis by in- 
corporating the propeller aerodynamic terms into the 
equations of motion and solving for the particular com- 
bination of parameters that makes the stability deter- 
minant vanish (Appendix A). 

Typical Whirl Boundaries-Fig. 3 shows some tyypicd 
whirl stability boundaries for system 1 piotted in a con- 
venient nondimensional form. The abscissa is the ratio 
of the airplane forward speed to the propeller tip speed, 
which is equivalent to l/r times the propeller advance 
ratio J. 

Let us direct our attention first to the upper curve 
which shows the variation of whirl flutter frequency with 
advance ratio for the case of zero damping. Two points 
are worth noting. First, since the whirl frequency is 
less than we, it  is apparent that whirl instability develops 
in the backward mode. This seems to be a characteris- 

FIG. 3. Whirl stability bound- 
aries (system 1, K +  = 2Ke). 

4 ,/ ,‘ UNSTABLE 

0 2 4 6  -_ v -L 
nR T 

backward whirl mode would be excited by propeller 
unbalance forces. 

The lower figure shows stability boundaries in which 
the square of a reduced frequency parameter defined 
as w,,c/2QR is plotted against advance ratio J, where 
we is the pitch frequency with a stationary propeller, cis a 
reference propeller blade chord, and Q R  is the tip 
velocity of the propeller. Note that for a given pro- 
peller tip speed the ordinate of the figure is propor- 
tional to stiffness in the pitch direction. The area 
above and to the left of the boundaries indicates the 
region of stable operation of the system. Propeller 
whirl boundaries are shown for two damping values- 
namely, j3/& = 0 and 0.02. Also plotted on the same 
figure is the magnitude of the parameter (w,,c/2QR)* re- 
quired to prevent divergence in a static sense. Note 
that whirl is the critical mode of instability for V / Q R  
values less than 0.8 or 0.9, whereas a t  somewhat higher 
values of V/QR system stability is defined by a di- 
vergence boundary. 

Influence of Various Parameters on Whirl Flutter 

Stiflness and Speed Boundaries-The nondimensional 
stability boundary plots shown in Fig. 3 can be in- 
terpreted in various ways. In fact, it is interesting to 
note just how much information on a system’s stability 
characteristics can be packed into a single plot of this 
type. By means of illustration, let us apply the results 
presented in Fig. 3 to the following three cases of prac- 
tical importance : constant propeller speed, constant 
advance ratio, and constant stiffness. The lirst case 
represents a flight operating condition for a constant- 
speed propeller. The stiffness airspeed stability bound- 
ary for this condition is shown on the left side of Fig. 4. 
Note that these boundaries are identical in shape to the 
previously shown nondimensional plot. At the low end 
of the speed range the stiffness required for stability is 

tic feature of propeller whirl which has been observed 

Ref. 2. The second point regarding the whirl frequency 
is that, in general, it is considerably lower than the pro- 
peller rotational speed. It is worth noting, therefore, 
that it  appears unlikely that a resonant response in the 

* If the propeller blades are sufficiently flexible, a mechanical 
instability of the type sometimes encountered in helicopters can V V V 

occur; however, to  preclude mechanical instabilities, only rigid 
blades are considered in the present analysis. 

for all systems treated both in the present paper and in n CONSTANT J CONSTANT K e  8 K *  CONSTANT 

FIG. 4. Illustrative stiffness and speed boundaries (system 1, 
K+ = 2Ke). 
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FIG. 5a. Pitch and yaw FIG. 5b. Pitch and yaw 
stiffness required. Effect of stiffness required. Effect of 
advance ratio (system 1, damping (system 2A, J = 
B/& = 0) .  1.8). 

low and is governed by propeller whirl flutter; the ad- 
dition of damping is seen to reduce the amount of stiff- 
ness required for stable operation. As speed is increased 
larger stiffnesses are required for stability, and for suf- 
ficiently high speeds stability becomes governed by 
divergence instead of flutter; damping, of course, does 
not affect the position of the divergence boundary. 

The second case, constant advance ratio, is illustrated 
by the plot in the center of Fig. 4. This condition cor- 
responds to a windmilling propeller having a fixed blade 
angle and represents a convenient wind-tunnel test 
procedure. Again the stability boundaries depict the 
variation of stiffness required to prevent whirl as a 
function of airspeed. In this case, however, the curves 
are parabolas-i.e., K O  is proportional to lr2 or, to put 
i t  another way, KO varies linearly with dynamic pres- 
sure. Note that, in contrast to the previous case, di- 
vergence would not be encountered for the particular 
values of J and damping considered. 

Finally, with stiff ness held constant, the stability 
boundaries involving propeller speed and forward speed 
are illustrated on the right side of Fig. 4. The unstable 
region is above and to the right. The propeller whirl 
boundaries for this case are nearly hyperbolic in shape, 
but for higher values of damping may even curve to 
the right again with increasing f2 (similar to the diver- 
gence curve shown). An important implication of the 
plot is that for operation on the nearly vertical portion 
of the curves a large change in propeller speed can occur 

-4- 
0 2 4 6 8  

W O  
FIG. 6a. Static charac- FIG. 6b. Loci of deflec- 

teristics. Divergence bound- tions as ks2 is reduced. 
aries (system 1, J/T = 0.6). 

without altering the critical speed appreciably, but that 
for operation on the nearly horizontal portion of the 
curves, the critical speed is quite sensitive to small 
changes in propeller speed. 

Pitch and Yaw Stifness-Next, let us consider dif- 
ferent relative amounts of stiffness in the pitch and yaw 
directions, as illustrated in Figs. 5a and 5b. Fig. 5a 
shows the critical pitch stiffness plotted against the criti- 
cal yaw stiffness for various values of advance ratio. 
The example treated in this figure is system 1 with zero 
damping. The whirl and divergence boundaries of in- 
terest are indicated by the shaded lines, and the lines 
radiating from the origin represent lines of constant 
stiffness ratio. As would be expected, divergence, being 
a static instability, is governed solely by the minimum 
of the two stiffnesses involved. Thus, for each value of 
J / a  there corresponds a minimum stiffness level below 
which the system will diverge. The whirl flutter 
boundaries, on the other hand, indicate that if the stiff- 
ness in one direction is high enough, then the stiffness in 

1.2 I 

STABLE FIG. 7. Effect of pivot loca- 
tion and damping (system 2A, SJ. 
= So. J = 2.6). 

I g /R’ e’R j I p-.. - 0  

the other direction may even be zero without the sys- 
tem’s encountering propeller whirl. This, of course, 
may be explained by the gyroscopic coupling action 
which in effect “stiffens” the system in the direction of 
least stiffness-the system wants to go in the direction 
of least stiffness but is restrained from going by gyro- 
scopic coupling with the maximum stiffness. 

To illustrate the effects of damping, similar whirl 
flutter boundaries are shown in Fig. 5b for the system 
treated in Ref. 2 (system 2A). These boundaries were 
obtained graphically from Fig. 10 of Ref. 2, for an ad- 
vance ratio of 1.8. The pitch and yaw stiffnesses a t  
each damping value have been normalized with respect 
to the critical stiffness for the symmetric condition 
(n = 1.0). 

A point to be noted in Fig. 5b is that the shape of the 
whirl boundaries is critically dependent upon the in- 
ternal damping of the system. In the past, investiga- 
tors have used-as a simple means of correlating sta- 
bility boundaries for systems having various stiffness 
ratios-the concept of an “effective” stiffness, such as 
the maximum of the two stiffnesses involved, or the 
rms stiffness defined as d(Kmaz2 + Kmi,2)/2. (Whirl 
boundaries described by the maximum stiffness would 
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plot as a square with sides parallel to the ordinates in 
Fig. 5, whereas boundaries described by an rms stiff- 
ness would plot as a quarter-circle centered a t  the origin.) 
Since each of the boundaries presented in Fig. 5b appears 
to have a different characteristic shape, it is apparent 
that no simple stiffness criterion is generally applicable 
over the range of damping values and stiffness ratios 
shown.* 

Static Divergence-It is of interest to consider in 
somewhat more detail the static-divergence boundaries 
for a windmilling propeller plotted in Fig. 5a as a func- 
tion of stiffness in the pitch and yaw directions. The 
boundaries for J / a  = 0.6 in Fig. 5a have been replotted 
and extended to zero stiffness in Fig. 6a. (These 
boundaries are plotted against nondimensional sti f f-  
nesses ke2 and k,2 instead of KO and K ,  as in Fig. 5a.) 
Note from the corridor of stable operation that if the 
pitch angle and yaw stiffnesses are equal or nearly equal 
(K+/Ke = 1.0) the system will be statically stable even 
when the stiffnesses are reduced to zero. Although in a 

SYSTEM 28, S+ : Sg 
CL 

FIG. 8. Effect of mass ratio p = I l ! f , / rpc~~R (system 2B, 
K+ = Ke). 

practical case the critical stiffness of such systems would 
be governed by whirl-flutter rather than static-diver- 
gence considerations, it is instructive, nevertheless, 
cAal&Lc thc static Sehzvior of 2 -rstem "J IS stiicess is 
varied. 

For this purpose, consider the situation where a 
rigidly mounted power plant is inclined a t  a small 
pitch angle Bo relative to the free stream. Now, let the 
power-plant mount stiffness be reduced, and observe 
the static deflections that result. Because of the in- 
clined flow angle, aerodynamic lift and moment de- 
velop, causing the system to be deflected both in pitch 
and in yaw. These deflections bring about changes in 
the aerodynamic forces, which in turn further modify 
the deflections. If, however, the system is statically 
stable, there is associated with each stiffness level a 
particular combination of pitch and yaw deflections for 
which the aerodynamic forces acting on the propeller 
are exactly balanced by the elastic forces developed in 
the mount system. 

In Fig. 6b the loci of this static equilibrium are 
plotted as the stiffness of the initially rigid system is 

--- -. .. 

, 

* These findings are the result of comments by R. E. Donham 
and E. E. Postel of Lockheed Aircraft Corporation, California 
Division. 
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FIG. 9. Additional aspects relating to propeller whirl. 

progressively reduced. The two curves shown are for 
stiffness variations along the K+/Ke = 1.0 and K+/K, 
= 0.5 lines indicated in Fig. 6a. Whereas Fig. 6a shows 
the divergence boundaries, Fig. 6b shows the static 
deformations of the system as these boundaries are ap- 
proached along lines of constant stiffness ratio. Note 
that over the limited range of stiffnesses where the 
K+,'Ke = 0.5 line falls on the unstable side of the 
divergence boundary, the static deflections in Fig. 6b 
become infinite. On the other hand, when K,/Ke = 1.0 
the system is statically stable regardless of the stifTness 
level. Thus, for each reduction in stiffness, the sym- 
metric system-which was initially inclined in pitch 
relative to the free stream-assumes a finite static pitch 
and yaw angle of equilibrium as illustrated in Fig. 6b. 

Attempts were made to verify the above theoretical 
predictions in a simple wind-tunnel test for divergence 
on a symmetric system. A wind-milling propeller was 
attached to the upstream end of a horizontal rod which 
was pivoted a t  the center of gravity of the combination. 
A large amount of viscous damping was introduced into 
the system in order to suppress whirl flutter. Con- 
trary to the predictions shown in Fig. 6, a static-type 
divergence was encountered during the test. Thus, it  
appears that a ~ i o d j . n a ~ i c  fcrces not considered im- 
portant in propeller whirl call becuiiie i ~ q j o i - ~ a i  in the 
static-divergence problem. Two such forces that were 
neglected in the present analysis are the braking action 
of a windmilling propeller and the aerodynamic-drag 
forces on the hub and blades of the propeller. More 
insight into static-divergence aspects is needed. 

Pivot Locution and Damping-Two other parameters 
found to play an important role in propeller whirl are 
the location of the pivot axes and damping. The effect 
of these parameters on whirl can be illustrated by Fig. 
7, which shows the variation of the ratio of pitch fre- 
quency to propeller speed we/Q with the pivot axis lo- 
cation e'/R for various damping values. In varying the 

/! 
u/n. 
a FIG 10. Frequency re- 

XI sponse for critical and sub- 
critical conditions on damping 
(system 2A, Se = &, J = 1.8. 
e / R  = 0378). 
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P/p,, = . o =  

FIG. 11. Transient response for subcritical, critical, and 
supercritical conditions on damping (system 2A, conditions same 
as in Fig. 10). 

pivot location, appropriate changes were also made in 
the moments of inertia, so as to represent a fixed mass 
system. (A structural-type damping is assumed in this 
case, as in Ref. 2.) For constant propeller speed the 
ordinate of the figure may be interpreted as being pro- 
portional to the square root of the stiffness. An im- 
portant point to note is that for the smaller e/R values 
high stiffness is required, and further that the whirl 
boundaries are rather sensitive to damping changes, 
especially when the damping is near zero. The further 
the pivot location is moved from the propeller disk, the 
less the stiffness required and the smaller the effects of 
damping. The favorable effect shown by increasing the 
pivot distance e may be attributed to the aerodynamic 
damping associated with transverse velocities of the 
propeller hub-that is, when the pivot is close to the 
propeller the transverse velocities due to precession are 
small and as a result the aerodynamic damping is small 
relative to the structural damping. With a large pivot 
distance, however, the aerodynamic damping tends to 
predominate and therefore causes the system to be less 
sensitive to changes in structural damping. 

Efect of Mass Ratio-Consider next the effect of 
varying a mass ratio parameter defined as P = M p  + 
?rp~,,~R. This parameter is a measure of the propeller 
blade mass relative to a cylindrical mass of air surround- 
ing the blade. Fig. 8 shows the effect of p on the stiff- 
ness-velocity boundaries for damping values p/& = 0 
and 0.02. When damping is zero, variations in p have 
a negligible influence on the boundaries. With a damp- 
ing of /3//3,, = 0.02, however, we see the required stiff- 
ness is lowered with increasing p .  A 1.1 increase can be 
associated with an increase in flight altitude, in which 
case one might anticipate the trends indicated in Fig. 8 
because of the reduced magnitude of the aerodynamic 
forces acting on the propeller. 

Additional Aspects-kt us now briefly discuss three 
additional aspects of propeller whirl (Fig. 9). The first 
effect indicated is the effect of lag in lift developed by the 
propeller blades. As an illustration, consider the pro- 
peller axis to be deflected in yaw relative to the free 
stream. The angle of attack of each blade element 
therefore varies sinusoidally once per revolution of the 

propeller, being zero for the horizontal position and 
maximum for the vertical position. From a quasi- 
steady point of view the lift should be in phase with this 
sinusoidal variation in angle of attack. As a conse- 
quence of wake effects, however, the unsteady lift force 
on a blade element lags the angle of attack by a phase 
angle 4 (see Appendix B). In most of the results pre- 
sented in this paper aerodynamic phase lag has been 
ignored. The sketch in the upper right of Fig. 9 is pre- 
sented, however, to illustrate the effect of lift lag on the 
stiffness-speed whirl boundary. It can be seen that 
aerodynamic phase lag tends to have a stabilizing effect 
on the system. 

Next, let us ask what effect wing flexibility has upon 
whirl stability. Actually, the answer to this question 
is beyond the scope of the paper; however, certain 
general remarks and speculations can be offered. 

Limited experimental and analytical evidence sug- 
gests that the effect of adding a propeller-nacelle com- 
bination to a wing tends to have a stabilizing effect on 
the whirl flutter mode-that is, the speed necessary to 
cause whirl instability for the wing-mounted case is 
greater than the critical speed for the rigidly mounted 
nacelle. The wing in this instance, therefore, seems to 
act primarily as a damped-mass oscillator, capable of 
absorbing energy, as is depicted by the right-hand mid- 
dle sketch of Fig. 9. 

On the other hand, if the wing by itself has a flutter 
speed approximately equal to the critical speed for the 
rigidly mounted nacelle, the combination of the two 
might conceivably cause a lowering of the flutter speed. 
Also, if the wing by itself has a flutter speed less than the 
critical speed for the rigidly mounted nacelle, the addi- 
tion of the nacelle to the wing might cause the wing to 
be stabilized. Further work is needed, however, to 
verify and elaborate on these points. 

Finally, we show at  the bottom of Fig. 9 the effects of 
an erratic inflow distribution over the propeller disk. 
Such an inflow could be produced by flow irregularities 
over the fuselage or other bodies in the vicinity of the 
propeller. We wish to examine whether the aerody- 
namic loads associated with such an inflow can excite a 
resonant response in the whirl mode at subcritical con- 
ditions. To do this, assume an inflow distribution 
which is an arbitrary function of position on the pro- 

FIG. 12. Propeller whirl model tested. 
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FIG. 13. Experimental pro- 
peller whirl boundaries. 
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peller disk but does not vary with time. It can be 
shown by Fourier-series development that the funda- 
mental frequency component of the loads associated 
with such an inflow is equal to the propeller speed times 
the number of blades-in this case, say, 4Q-and that 
the higher harmonics are integral numbers of this 
fundamental frequency. This frequency is well above 
the whirl frequency for any practical configurations that 
can be envisioned. Hence, erratic inflow is not expected 
to excite a forced-type resonant response of propeller 
whirl mode. However, if the disturbance is a function 
of time, such as would be the case with a gust, or if non- 
linear effects arise, forced response in the whirl mode 
may become a question of practical importance. 

Subcritical and Supercritical Response 
Frequency Response 

Figs. 10 and 11 illustrate some response character- 
istics of the system as the critical whirl boundary is ap- 
proached by varying damping. We first consider the 
frequency response of system 2A due to a sinusoidal 
moment applied about the pitch axis, for So = S,. 
Curves are shown for two damping values representing 
stable (/3//3cr = 0.04) and neutrally stable (@/acr = 
0.03) conditions. The frequency scale has been normal- 
ized with respect to wg and the ordinate with respect to 
Bsta t ic .  As pointed out earlier, the unsia'uit: mode de- 
velops from the backward whirl mode, as is evidenced 
by the fact that the frequency is less than wg. Note also 
that the forward mode, having a frequency greater than 
w ~ ,  is well-damped both for the subcritical and critical 
conditions. 

Transient Response 

In Fig. 11 transient responses as obtained on an 
analog computer are shown for the same system con- 
sidered in Fig. 10. Here the propeller response is viewed 
from behind and i t  is rotating in a clockwise sense. The 
curves represent paths traced by the propeller hub sub- 
sequent to an initial lateral displacement to the right. 
The top two figures represent stable and neutrally 
stable conditions and are for the same damping values 
used in Fig. 10. The bottom curve is for a slightly 
smaller damping (p/Pcr = 0.02) and, as can be seen, 
represents the diverging motion of an unstable system. 

Here again it can be observed that the instability de- 
velops in the backward whirl mode, by noting that the 
system is precessing in a counterclockwise direction, 

whereas the propeller is rotating clockwise. Evidence 
of the forward mode, which is also excited by the initial 
condition used, can be seen from comers formed in the 
path during early stages of the transient motion. This 
mode quickly dampens out, however, as would be ex- 
pected from indications shown in the previous frequency 
response plots. 

Experimental Results 

Up to this point all of the results presented have been 
based entirely on theoretical considerations. In this 
concluding section some experimental data are pre- 
sented which tend to bear out some of the predicted 
trends. These results were obtained in a small open- 
throat wind tunnel a t  speeds between 30 and 50 ft/sec. 

Model Tested 

A photograph of the model tested is shown in Fig. 12. 
It consists of a windmilling propeller attached to a rod 
which has freedom to pitch and yaw about a set of 
gimbal axes. The stiffness is controlled by varying 
the tension in a spring connected axially to the other 
end of the rod. Note that the model represents system 
2 and has equal pitch and yaw stsnesses. Pertinent 
parameters for the model are tabulated in Table 1 under 
system 2C. 

Model Stability Boundaries 

The results of the wind-tunnel tests are given in Fig. 
13, which shows the stiffness required for neutral sta- 
bility plotted against dynamic pressure. It will be re- 
called from Fig. 4 that theory predicts a linear variation 
of stiffness with dynamic pressure p for a windmilling 
propeller ( J  constant). In general, the experimental re- 
sults support this conclusion. Damping measurements 
before and after the tests were not always repeatable, 
but generally fell between g = 0.02 and g = 0.05. It 
can be seen that the experimental-data points fall 

0.01 and g = 0.03 damping. Further propeller-whirl 
tests under somewhat better-controlled conditions than 
were possible here are being considered. 

-.LL:- W l L l l l l l  +1.- LUC +hnn-c=+;n-l 'LLL"'CC*CUl hnqrnAQAec "V-Y-~.." rnqputed -"- for g = 

v . J  m - 7  
FIG. 14. Nonsteady aerodynamic coefficients for constant chord 

propellers (nonthrusting). 
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Concluding Remarks 

From the consideration of whirl flutter that has been 
made herein the following basic conclusions may be 
drawn. 

(1) In general, whirl flutter is strongly dependent on 
the stiffness, the damping, and the pivot location. 

( 2 )  The concept of an “effective” stiffness for sys- 
tems having unequal pitch and yaw stiffnesses should be 
used with caution, because the shapes of the stiffness 
boundaries depend strongly upon other system charac- 
teristics, particularly damping, and appear to preclude 
the use of any single criterion. 

(3) Experimental data presented herein tend to con- 
firm the analytical results. 

In concluding, it is appropriate to call attention to a 
few propeller whirl parameters not considered in this 
paper. The effects of some of these parameters were in- 
vestigated in Ref. 2 and may be summarized as follows. 

(1) Mach-number effects tend to be slightly de- 
stabilizing. 

( 2 )  Propeller-thrust effects can be ignored (as de- 
duced from cruise-flight conditions only). 

(3) Structural-type damping and viscous-type damp- 
ing give different stability boundaries. 

(4) When damping in pitch and yaw are unequal, it is 
beneficial to have the greater damping in the direction 
of minimum stiffness. 

Additional important factors are almost certain to 
arise in the treatment of more complex systems. One 
might find cases, for example, where added degrees of 
freedom, such as propeller blade flexibility, produce 
significant changes in the stability of a system. The 
study of this and other propeller whirl systems having 
more than two degrees of freedom would be a logical ex- 
tension to the work treated herein. 

Appendix A 
Derivation of Equations for Whirl Instability 

System Dynamics 

Cantilevered System-In this system the propeller- 
nacelle-engine combination is considered to be at- 
tached a t  the aft end of the nacelle to a rigid support as 
a cantilever beam. The system is thus capable of de- 
flecting as shown in Sketch A, in which the forces and 
moments due to the propeller are shown as arrows. The 
governing equation of motion may be derived by the 
Lagrangian dynamic equation approach. Thus, as- 
sume the deflections in the y- and z-directions to be ex- 
pressed in terms of chosen modal functions as 

y = aiyi, z = bizi (All  
where the modal functions have the characteristics 
shapes illustrated schematically in Sketch B. 

The slopes or rotations a t  the cantilever tip would be 

} (A21 
G = (dy/dx)z=, = ai+i 
0 = (dz/dx),,, = bl& 

With Eqs. (Al )  and (A2), the kinetic energy, potential 
energy, and virtual work expressions thus may be 
written 

L 
T = s mea12y12dx + 2 S L  meb12z12dx 

2 0  

SL L 
U = A S EIla12y1K2dx + ~ E12b12z1“2dx 

2 0  2 0  

where me is the mass per unit length of the nacelle and 
engine, EIl and EI, are the bending stiffnesses in the 
y- and z-directions? and a prime and a dot denote deriva- 
tions with respect to x and time t, respectively. 

From Lagrange’s dynamic equation 

the equations of motion follow as 

where 

Structural damping may be taken into account by 
introducing either a viscous or a “complex” type damp- 
ing term in each equation-for example, either @il or 
(1 + ig)K, in the first equation. This derivation will 
be limited to viscous-type damping; the modified equa- 
tions therefore appear 

Mliil + p&i + K+ai = P, + +ITz 
Mzbi + PObl + Kohl = Pz + OIT, 
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A separation of the forces and moments a t  the pro- 
peller hub into inertial and aerodynamic components is 
convenient a t  this point. The propeller is considered 
to be rotating counterclockwise with angular velocity fl 
when viewed from the front. The consideration, then, 
of the inertia forces and moments due to translation and 
rotation (through d’ Alembert’s principle), and the 
basic right-hand rule for a gyroscope (Sketch C)-i.e., 
in terms of the motion given by Eqs. (Al) and (A2)- 
leads to the following equations : 

P, = -M& + L,, P, = -Mpbl + L, 

T,  = -M,kPz&J.1 - M&p2L?&01 + M,  

T,= -M& p2b101 + M&P2%l$l + Mu 

where M ,  is the mass of the propeller, k ,  and k p  are the 
radii of gyration of the propeller about a diameter and 
about the spin axis, respectively, and L,,L, and M,,M, 
are the aerodynamic forces and moments exerted by the 
propeller a t  the hub. The substitution of these equa- 

A gyroscopic coupling of the equations of motion is thus 
seen to occur, a fact which is of fundamental importance 
to the establishment of whirl. In fact, when the right- 
hand sides are set equal to zero, the resulting homogene- 
ous equation leads to natural modes which are charac- 

section wili iniroduce the aerodynamic forces ac? 
moments of the propeller (which adds further coupling) 
to establish the complete dynamic equations governing 
the whirl phenomenon for the system under con- 
sideration. 

Pivoting System-Another representation that can be 
envisioned for a propeller-nacelle combination is to have 
the propeller and a t  least part of the engine act as a 
rigid unit which is pivoted or gimbaled a t  some point 
along the engine axis, the motion being restrained by 
pitch and yaw springs. Such a system is illustrated 
schematically in Sketch D. Here the generalized co- 
ordinates of motion may be al and bl as used in the 
previous section, or 0 and $, the connection being 

A_---&- Lcl;aLicdly -- ,d +hr. LIIL nmnnrr rLLLL,,ion t jpe  (Fig. 2) .  -4 cdxequeQt 

al = e$, bl = e0 (A61 

For comparison with the previous section, a1 and bl will 
be used. By use of a procedure analogous to that used 
in the preceding section, it may be shown that the 
equations governing the motion of this pivoting type 
system are as follows 

where I ,  is the total mass moment of inertia about the 
pivot point defined by 

I ,  = Meke2 -+ M g 2  + Mpkp2 

in which Me is the mass pivoting about the pivot point 
excluding the propeller, and k, is the radius of gyration 
of this mass about the pivot location. 

Equivalence of Cantilever and Pivoting Systems- 
Through comparison of Eqs. (A5) and (A7), a means is 
afforded for expressing the parameter of one system in 
terms of those of the other system. The key point in 
this comparison is the recognition that the extension of 
the end slope of a chosen modal function leads to an 
intersection with the x-axis which corresponds to the 
pivot location (see Sketch B). 

The fact that fi1 and 81 may be different means that 
the pivot point for yaw is different than that for pitch. 
In this comparison, however, the following equalities 
will be assumed: $1 = 81 and yl = 21. The relations 
which express the equivalence of the two systems may 
then be listed as follows : 

Replace BY 
= el l/e 

M ,  = Me We2 
K ,  %/e2 
KO &/eZ 

Equationsfor Whirl Flutter 

I n  Appendix B the equations for the aerodynamic 
forces and moments of a precessing propeller are 
derived [Eqs. (B8)]. If these are substituted into 
Eqs. (A5), using Eqs. (A2), and if the following complex 
sinusoidal motion is assumed 

ai = aloeiot, bl = blOeiot 

a pair of homogeneous equations will be obtained which 
deiine conditions a t  whirl instability. The determinant 
of these equations may be shown to be of the form 

Torque reaction 

/ 4 

SKETCH C. (Left). SKETCH D. (Right). 
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a2 = (81coA1’)/2p, b2 = (A1 + 012R2As)/p 

and where the factors A I ,  AI‘,  etc., are propeller func- 
tions which are derived in Appendix B. For a given 
propeller they depend only on the advance ratio J-see, 
e.g., Fig. 14. 

Eq. (AS) represents a complex characteristic equation 
which defines whirl instability or “whirl flutter,” and 
solution to the equation proceeds in the same manner 
as is used in flutter work. Note that a reduced fre- 
quency k based on the rotational tip speed of the pro- 
peller appears as a natural parameter, and that a mass 
ratio p in terms of the propeller blade mass and the 
mass of a cylinder of air surrounding the blade has been 
used. 

In application to specific cases, one procedure for the 
solution of Eq. (AS) is to consider all system parameters 
known except the stiffness level necessary to prevent 
instability; the relative stiffness in the pitch and yaw 
directions may be specified, say K ,  = nK, (which 
means that k,2 = nk:). Then for a chosen value of 
V/QR, solution is performed for k and KO2. Trial-and- 
error solutions are avoided by algebraically solving the 
imaginary part of the determinant for k2 in terms of ke2, 
ignoring the fact that the damping terms are functions 
of k,-that is, assuming that 61 and 82 are in the nature 
of known values. This equation for k2 is then substi- 
tuted into the real part to give a quadratic equation in 
kO2 alone, which is readily solvable. In the solution for 
kg2, damping is handled by simply assigning values to 
61 and 62. After the solution is obtained, the values of 
damping which would lead to the assigned values of 
G1 and 62 are found by inverting the equations defining 
the G’sfor  example, &/Per = 6,/2u1k,. For cases 
having certain symmetries much simplification to this 
solution results. In fact, for the case of $1 = el, Ml = 
M2, P,,, = (note $1 = O1 makes dl = 0), and for the 
notation K ,  = nK0 or k,2 = nke2, the quadratic is 

For the special case of equal stiffnesses in both the yaw 
and pitch directions (n = l), the solution of Eq. (A8) is 
simplified even more, and is 

k = ~ i / ( b o  + Si) 
ke2 = k2 + (adad + k(el/al) 

Appendix B 

Propeller Aerodynamics 

Section Displacements and Velocities 

Consider a rotating propeller undergoing a precession 
or “whirl” about its spin axis. The position at  any 
instant may be represented by the head-on sketch, 
Sketch E. 

In addition to the displacements indicated, the pro- 
peller plane will yaw a small amount $ about a line 
parallel to the z-axis and will pitch an amount 0 about a 
line parallel to the y-axis. (For the cantilever type of 
nacelle deformation considered in Appendix A, these 
rotations are 

. 

$ = alJ.1, e = hel 
while for the pivoting system these rotations are al/e 
and bl/e,  respectively.) 

A first-order approximation to the nonsteady aerody- 
namic forces that develop on the precessing propeller 
can be developed by a strip-theory approach. Basic 
in this consideration are three perturbation quantities : 
the local or section geometric angle-of-attack change, 
the perturbation velocity S in the propeller plane, and 
the perturbation velocity W out of the propeller plane. 

Consider blade 1 : the geometric angle-of-attack 
change along the blade due to yaw $ and pitch 0 is 

(B1) a1 = $ sin Qt - e cos Qt 

The perturbation velocities S and W of a point situated 
at  radius r can be determined from the equations de- 
scribing the instantaneous position of this point : 

y = a1 + r cos Qt 

z = b, + r sin Qt 

w1 = -$r cos Qt - Or sin Qt 

SKETCH E. (Left). SKETCH F. (Right). 
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Thus 

5 = --jsin M +  COS M - Or 
= -til sin M + bl COS 

w = -J.. cos M + $YO sin M - 
dr sin M - erQ cos fh 

Section Lift 

The nonsteady lift that develops on a section of blade 
1 may be established from all S, a of the preceding sec- 
tion through use of Sketch F, where ,!3 represents the 
steady-state blade angle. The velocities S and .lir lead 
to a velocity component normal to the resultant 
velocity U of magnitude 

-zLW/w + S(V/V) 

With a1 and this normal velocity the effective angle of 
attack sensed by the blade is 

a = a0 + a1 - &(Qr/U2) + S(V/U2) 

The velocities S and also lead to a component in the 
direction of U and thus cause the effective resultant 
velocity to be 

u, = u + w(V/V> + S ( O r / u )  

The lift that develops on the blade is therefore 

i = (ai2jpcUe2a 

U 
= - pc(U9 + mv + 2SQr) x 

2 

where a is the section left-curve slope and c the blade 
chord. The first term in brackets is associated with the 
steady-state lift while the remaining terms lead to the 
nonsteady lift effects. Note that the nonsteady lift 
terms involving zb and S are influenced by the steady- 
state angle of attack a. The terms (ZV/QY)CQ and 
(2Qr/J'))aro are generally small compared to the unit 
values shown, however, and therefore contribute very 
little to the lift; indeed, for a nonthrusting (windmill- 
ing) propeller, where a 0  = 0, they vanish. They are 

therefore neglected in the remainder of the paper. 
With a0 considered zero, the substitution of Eqs. 

(Bl) and (B2) into Eq. (B3) gives the following equa- 
tions for the nonsteady lift that develops on blade l: 

(a/2)pc( vZ$ - Vul + Qr2d) sin at 
zl = - ( u / ~ ) ~ G (  v2e - vbl - fir2$> COS M + 

= -fl cos SU + f2 sin M 034) 

The section lift on the other blades is found readily from 
this equation by replacing 

M by Qt + x for blade 2 

$It by Qt + ( x / 2 )  for blade 3 

M by Qt + (3x/2) for blade 4 

With this substitution it is found that 

12 = -11 

l3 = (a /~)pc(V% - vbl - Q Y ~ $ )  sin M + 
= fi sin Qt + f2 cos slt 

14 = -la 

Propeller Side Forces and Moments 

To determine the side forces and moments of the non- 
steady propeller aerodynamics it is convenient to re- 
solve the section lift force into torque and thrust com- 
ponents as depicted in Sketch G. These components 
lead to side forces 1, and 1, in the y- and z-directions and 
to moments AM, and AM, about the z- and y-axes. 
The equations for these quantities are found [with the 
use of Eqs. (B5)] to be 

Note that the sin Qt and cos Qt no longer appear. 
Since these equations apply to a local section they must 
be integrated to establish the total resultant aerody- 
namic forces and moments a t  the propeller hub. The 
integration from hub to blade tip radius R leads to tbe 
following equations: 
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where a value of a = 27r is used. The alternate forms of 
the equations, involving a cylindrical mass of air about 
each blade and defined by Ma = (spco2R)/4, have been 
given because of their convenience in whirl flutter con- 
siderations. The factors Al,  All, AB,  AB’, and A 3  in 
these equations are propeller functions defined by 

These functions are noted to depend on the blade’s 

chord geometry involving a reference chord co and on 
the advance ratio J .  For the case of a constant-chord 
propeller the integrals yield closed form results and 
give the values shown in Fig. 14. 

Mach Number and Finite Blade-Length Eflects 

Tacit in the preceding derivation is the use of the 
theoretical lift-curve slope of 2n and incompressible 
flow. Compressibility and the induction effects of a 
finite-length blade may be taken into account ap- 
proximately by modifying the lift-curve slope in some 
manner. One approach is to use a procedure often 
used in treating straight wings of finite aspect ratio, 
even though the wake shed by the propeller is helical 
in nature. For example, the lift-curve slope 2 s  may be 
multiplied by two factors, the Glauert-Prandtl Mach- 
number correction 1 /41  - Mr2, and a cornpressible- 
flow aspect-ratio correction A‘/(A‘ + 2 ) ,  where M ,  is 
the Mach number of the resultant velocity a t  each 
blade section and A’ = A m 2 ,  A being the 
blade aspect ratio. If this procedure is employed the 
resulting approximate overall correction to the lift- 
curve slope may be shown to be 

- ~- 
A 

2 + A dl - M,2 
A 

2 + A d 1  - M2 [l  + (s2/J2)7l2I 

where M is the forward-flight Mach number and q = 
r/R. To make use of this correction i t  is merely neces- 
sary to insert the factor (BlO) under the integrals of the 
coefficients defined by Eqs. ( B 9 )  so that it forms part of 
the integrand. 

Comparison With Ribner’s Propeller Aerodynamics 

The treatment of propeller whirl in Ref. 2 makes use 
of propeller aerodynamics based on the work of Ribner.4 
The correspondence of the propeller coefficients derived 
herein with the derivatives used in Ref. 2 can be ob- 
tained by comparing Eqs. (B8) of the present report 
with Eqs. (10) of Ref. 2. If this is done, the following 
results are found (taking into account the difference in 
sign convention) : 

(4QCo/V)A1 corresponds to CY,  and -Cz, 

- (4Qc0/ V)Az corresponds to Cy, and Cz, 

- (2Qc0/ V)A2 corresponds to Cn, and - Cm, 

- (2QcO/ V)A3 corresponds to Cn, and Cm, 

As a numerical comparison of the results, consider the 
propeller treated in Ref. 2 for the case of P0.76R = 46’, 
which corresponds to a value of V/QR = 0.75. A com- 
parison of the propeller derivatives as derived herein 
with those taken from Fig. 5 of Ref. 2 is given in Table 2. 
The second and third columns of this table are the re- 
sult of applying the factor (B10) of the preceding section 
(using M = 0) to take approximate account of finite 
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TABLE 2 

S t r i p  theory x A 
Str ip  theory Reference 2 

A = 3.8 

-0.73 -0.506 -0.478 -0.46 

- .281 

I .lo I .14C I .097 

- .lo6 -.073 -.07 - -073 

blade-length effects. 
noted to occur when this is done. 

Quite favorable agreement is 

Li f t  Lag due to Nonsteady Flow 

Analogous to the case of an oscillating wing, the 
oscillatory lift which develops on the rotating-precess- 
ing propeller gives rise to a shed vortex which causes 
the lift to lag the quasi-steady value that is associated 
with the instantaneous angle of attack (the preceding 
sections represent the quasi-steady treatment). In the 
case of the propeller, however, the situation is much 
more complicated; first, for a four-bladed propeller 
there are four wakes causing induced effects; second, 
the wakes are helical; and, third, the wakes contain 
two frequency components (as will be seen shortly) due 
to the fact that the precession frequency is in general 
different than the rotating frequency. Rather than 
going into a rigorous treatment-which might, for ex- 
ample, involve the concept oi helical "ladders" to 
represent the shed vortex sheet and trail-a greatly 
simplified consideration will be given to show the es- 
sential modifications to the lift that are brought about 
by wake effects, The derivation is found to substantiate 
the existence of a lift term that has been encountered in 
experiments with propellers, but which is not predicted 
by the foregoing quasi-steady development. 

Thus, consider the lift equation (B4) and let the mo- 
tion be represented by 

The lift would then be given by 
+ e--iM eilW - e - i l l  

2i  + fzOeiwt i d  

2 11 = -floe 

which may be rearranged to 
-i(Q--o)f I' = -1/q(fi0 + ifiO)ei("w)t - l/z(flo - q d e  

This form shows that the lift and consequently the shed 
vortex contains two frequency components, one of fre- 
quency & + w ,  the other of frequency & - w .  To 
take into account this wake, it is reasonable to expect 
that all wake effects may be accounted for approxi- 
mately by introducing separate complex wake or circu- 
lation functions of the type conventionally used in the 
treatment of oscillating wings. A modified equation in- 
cluding lift lag effects would therefore appear 

ZI' = - [(F,  + iG1)/2l(f10 + i j z&i ("+W)t  - 
[ (Fz  - iG2)/2](flo - ifzo)e-i(n-w)t (B 11) 

where the reduced frequency appropriate to the first 
term is defined by kl = [(& + w)c]/2 U ,  while KZ = 
[(Q - w)c]/2U applies to the second, where U = 
2 / V z  + Q2r2. Note the presence of the negative sign in 
Fz - iG2 is essential, since it may be shown that 
whereas an ( F  + iG)  term results from an assumed 
motion of eiwt, an ( F  - iG)  occurs for a motion pro- 
portional to e-iwt,  where the G's are defined similarly 
(when & is considered to be greater than w )  . 

Now, if Eq. (B11) is reduced backward, the following 
equation is obtained: 

Ill  = [ ( F I  + Fz)/2](- f1  cos &t + f z  sin Ot) + 
[(GI + G2)/21(f1 sin Qt + f~ cos Ot) + 

[(GI - Gz)/2wI(-fl cos &2t + fz sin &t) - 
[(FI  - F?)/2w](f l  sin Ot +fz cos Qt) 

A similar treatment of Z3 [Eqs. (B5)] leads to 

13' = [(F' + F z ) / ~ ] ( ~ I  sin Qt + f z  cos Qt) - 
[(G, + G 2 ) / 2 ]  (-fl cos Qt + f2 sin Qt)  + 

[(GI - Gz)/2w](fsin Q2t + f 2  COS Qt) + 
[(F' - F z ) / ~ w ] (  --.f' cos Ot + fz sin Qt) 

Use of Eqs. (B6) gives finally the following equations 
which "include" lift lag effects 

1, + ___ 
Fi + Fz 1 ' =  ___ GI i- Gz ~ 

2 2 
GI - G:! ' Fi - Fz . 

I ,  - ~ 1, 2w 2w 

I t  is interesting to see that the lag effect causes the 
quasi-steady lift 1, and I ,  to be reduced in magnitude 

IC, + 
Fi + Fz 

and to be turned through an angle = tan-' 

in the direction of rotation. A side force due to pitch, 
or a vertical force due to yaw thus results, as has been 
found in tests on propellers. Note that average values 
of the F's and G's are involved in the first two terms of 
the lift expressions; this fact and the fact that w is 
generally small compared with & suggests that the use 
of an F and G based on a reduced frequency k = &c/2 U,  
involving & alone, is probably sufficiently accurate for 
evaluating the amount of lag from a practical stand- 
point. Note also that the last two terms in the expres- 
sions involve differences of the F s  and G's; the terms 
will therefore be quite small and probably are unim- 
portant in practical applications. 
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